skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ling, Xi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for trace-level fingerprinting. Recently, layered two-dimensional (2D) materials have gained significant interest as SERS substrates for providing stable, uniform, and reproducible Raman enhancement with the potential for trace-level detection. Yet, the development of effective 2D SERS substrates is still hindered by the lack of fundamental understanding of the coupling mechanism between target molecules and substrates. Here, we report a systematic excitation-dependent Raman spectroscopy investigation on the coupling between 2D materials such as SnS2, MoS2, WSe2, and graphene and small organic molecules like rhodamine 6G (Rh 6G). Strong coupling between SnS2and Rh 6G is found due to their degenerate excitons through Raman excitation profiles (REP), leading to the enhancement of Rh 6G vibrational modes that are observable down to 10−13 M. Our study shows that exciton coupling in the substrate-adsorbate complex plays a vital role in the Raman enhancement effect, opening a new route for designing SERS substrates for high sensitivity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Van der Waals magnets are an emerging material family for investigating light-matter interactions and spin-correlated excitations. Here, we report the discovery of a photo-induced state with a lifetime of 17 ps in the van der Waals antiferromagnet NiPS3, which appears exclusively with resonant pumping at 1.476 eV in the antiferromagnetic state. The long-lived state comes with a negative photoconductivity, a characteristic optical response of population inversion. Our findings demonstrate a promising pathway to potentially achieve long-lived lasing at terahertz frequencies in reduced dimensions. 
    more » « less
    Free, publicly-accessible full text available January 2, 2026
  4. Abstract Layered transition metal hydroxides (LTMHs) with transition metal centers sandwiched between layers of coordinating hydroxide anions have attracted considerable interest for their potential in developing clean energy sources and storage technologies. However, two-dimensional (2D) LTMHs remain largely understudied in terms of physical properties and applications in electronic devices. Here, for the first time we report > 20 μm α-Ni(OH)22D crystals, synthesized from hydrothermal reaction. And an edge-on condensation mechanism assisted with the crystal field geometry is proposed to understand the 2D intra-planar growth of the crystals, which is also testified through series of systematic comparative studies. We also report the successful synthesis of 2D Co(OH)2crystals (> 40 μm) with more irregular shape due to the slightly distorted octahedral geometry of the crystal field. Moreover, the detailed structural characterization of synthesized α-Ni(OH)2are performed. The optical band gap energy is extrapolated as 2.54 eV from optical absorption measurements and the electronic bandgap is measured as 2.52 eV from reflected electrons energy loss spectroscopy (REELS). We further demonstrate its potential as a wide bandgap (WBG) semiconductor for high voltage operation in 2D electronics with a high breakdown strength, 4.77 MV/cm with 4.9 nm thickness. The successful realization of the 2D LTMHs opens the door for future exploration of more fundamental physical properties and device applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Free, publicly-accessible full text available November 26, 2025
  6. Free, publicly-accessible full text available January 28, 2026